

AFRL-IF-RS-TR-2002-234
Final Technical Report
September 2002

HIGH PERFORMANCE REAL-TIME FUSION
ARCHITECTURE

Integrated Sensors, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2002-234 has been reviewed and is approved for publication.

APPROVED:

 STEVEN L. DRAGER
 Project Engineer

 FOR THE DIRECTOR:

 MICHAEL L. TALBERT, Major, USAF
 Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Final Jul 00 – Sep 01

4. TITLE AND SUBTITLE

HIGH PERFORMANCE REAL-TIME FUSION ARCHITECTURE

6. AUTHOR(S)

Garry Fountain

5. FUNDING NUMBERS
C - F30602-00-C-0111
PE - 63789F
PR - 407T
TA - HR
WU - PT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Integrated Sensors, Inc.
502 Court Street, Suite 210
Utica, NY 13502

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTC
26 Electronic Pky
Rome NY 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-234

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Steven Drager/IFTC/(315) 330-2735/Steven.Drager@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The objective of this effort was to define, prototype and demonstrate an affordable next-generation JDL Level 2 fusion
and exploitation architecture called the High Performance Real-Time Fusion Architecture (HPRTF). It was the goal of
HPRTF to produce the following:
-- Identification of processing bottlenecks that limit current Level 2 fusion systems from performing in real-time
-- Development of a hardware requirements trade space for real-time execution and identification of affordable
solutions.
-- Definition of an affordable, scalable, next generation fusion architecture, which will support real-time execution of
Level 2 fusion systems.
-- Development and demonstration of critical portions of a next generation Level 2 fusion architecture prototype system
that demonstrates the capability of real-time execution.

15. NUMBER OF PAGES
69

14. SUBJECT TERMS
JDL Level 2 Fusion, fusion architecture, system evaluation, parallelization, simulation
testing 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of contents

1. Introduction 1
1.1 Introduction to Fusion 2
1.2 Nodal Exploitation and Analysis Tools 2
1.3 The Force Aggregator 5
1.4 Scenario definitions 7
2. High Performance Real-Time Fusion 8
2.1 Processing Bottlenecks and Solutions 8
2.1.1 The Sybase Bottleneck 9
2.1.2 Sybase Solutions – HPC-link 9
2.1.3 Data Distribution and Collection Library 11
2.1.4 Evidence Network Algorithm 12
2.1.5 Evidence Network Algorithm Solutions 13
2.1.6 Contact Association Coefficients 14
2.1.7 Contact Association Coefficients Solutions 15
2.1.8 Build Current Clusters 16
2.1.9 Build Current Clusters Solutions 17
2.1.10 Reference Cluster Processing 19
3 Fusion Architecture Evaluation and Definition 20
3.1 COTS Embedded Computing Architectures 20
3.2 COTS Adaptive Computing Architectures 21
3.3 Beowulf Linux Clusters 22
3.4 Trade Space Comparison 22
4 HPRTF System Validation 23
5 Demonstrations and Results 24
6 Conclusions 30
7 List of Symbols and Abbreviations 31
8 Appendix A – Hardware Trade Study 32
8.1 Mercury 33
8.2 CSPI 38
8.3 Linux Cluster 43
9 Appendix B – HPRTF Installation and Usage Guide 48

ii

List of Figures

1. NEAT Application Suite (Sterling Software) 3
2. Potential of Real-Time NEAT 4
3. Force Aggregation Process Flow (Sterling Software) 5
4. NEAT Data Access Layers 9
5. HPC-link and Utilities 10
6. Data Distribution and Collection Functions 11
7. Evidence Network - First Look 12
8. The Parallel Evidence Network Algorithm 13
9. Evidence Network Performance Improvements 14
10. Contact Associations – First Look 14
11. Parallel Contact Association Coefficients Computation 15
12. Contact Association Performance Improvements 16
13. Current Clusters – First Look 17
14. Optimized Current Clustering Algorithm 18
15. Current Clustering Performance Results 18
16. Trade Space Comparison Summary 22
17. NEAT/HPRTF Integrated Test-bed 23
18. April-01 Demonstration Layout 25
19. Performance Improvements Summary 26
20. Performance Scalability 27
21. Relative Performance Improvement vs. Initial Build 27
22. RTExpress Visualization 28
23. RTExpress Visualization, 1-4 CPUs 29
24. Mercury Nodes vs. Processing 33
25. Mercury Nodes vs. Cost 34
26. Mercury Power & Air-Flow Requirements 35
27. Mercury Weight 36
28. Mercury Space Requirements 37
29. CSPI Nodes vs. Processing 38
30. CSPI Nodes vs. Cost 39
31. CSPI Power & Air-Flow Requirements 40
32. CSPI Weight 41
33. CSPI Space Requirements 42
34. Linux Cluster Nodes vs. Processing 43
35. Linux Cluster Nodes vs. Cost 44
36. Linux Cluster Power & Air-Flow Requirements 45
37. Linux Cluster Weight & Space Requirements 46
38. Cost Comparison 47
39. Physical Storage of NEAT Account and Sybase Database 48
40. NAT Main Control Window 51

iii

41. NEAT Display GUI 51
42. HPRTF Software Distribution 53
43. RTExpress Mapit Utility 54
44. RTExpress Mapit Utility – Generate Make Launch 55
45. Generate Make and Launch Status Window 56
46. Loading a Military Template File 58
47. Military Unit Track Action 59
48. Nodal Track Window 60
49. Force Aggregation Results 61

1

1. Introduction

 A constant challenge in automating the field of state-of-the-art data fusion systems to aid and
amplify the operator’s ability is to process data in or near real-time and produce prompt results to
the operator. The speed of any fusion process is critical in defining its usefulness in time-
sensitive missions. The current-day battlefield surveillance operator is faced with a data
reduction task where enemy movements amongst civilian traffic must be manually identified and
correlated with other off-board surveillance systems to better understand unfolding events as
they are happening.

 Modern fusion systems often suffer poor speed performance as their advanced correlation
techniques and np-hard computations are more compute intensive than single-processor
computers can handle. These systems generate valuable products but require a great amount of
time to complete. Therefore the battlefield situation is known hours later or in some cases the
next day. Consider the impact of a real-time solution allowing a complex fusion system to
function in or near real-time. Multiple-processor, or parallel computers offer a tremendous
performance potential but come at a price. The cost of purchasing and maintenance of such a
machine can be expensive. Further, implementing and/or porting the fusion algorithms onto these
machines can add significant costs.

 The purpose of this effort was to define, prototype, and demonstrate an affordable next-
generation JDL Level 2 fusion and exploitation architecture called the High Performance Real
Time Fusion Architecture (HPRTF). The scope of this effort includes the identification of the
limiting criteria in current Level 2 fusion assessment systems that inhibit them from providing
real-time assessment. Then, using this criterion and an assessment of the hardware requirements
trade space, determine and propose the required solutions. The trade-space of hardware and
software solutions will include system cost and maintenance among other factors. The proposed
solutions will consist of both hardware and software approaches including an assessment of cost
impact. The software developed will be made portable across multiple hardware architectures.
The appropriateness of the solutions will then be validated by applying them to an existing state-
of-the-art Level 2 fusion system, the Nodal Exploitation Application Toolkit (NEAT) developed
by Sterling Software; Rome, NY. The effort will culminate in a demonstration of the prototype
HPRTF system using multiple data scenarios.

 The effort succeeded in providing a demonstration of the prototype HPRTF system using
multiple data scenarios on a Linux Cluster at the Air Force Research Laboratory’s Rome
Research Site, in Rome, NY. Performance improvements were made by parallelizing existing
algorithms across multiple processors. However the sequential algorithmic processing was
optimized as well. Compared to the original software running on a Linux PC, results show an
average of 47 times speed improvement on a single processor and a 95 times speed improvement
when run in parallel across 4 CPUs. A development environment was also installed to facilitate
integration and reuse of the HPRTF products with other projects after completion of the HPRTF
contract.

2

1.1 Introduction to Fusion

The Department of Defense Joint Directors of Laboratories (JDL) have defined data fusion as a
multilevel, multifaceted process dealing with the automatic detection, association, correlation,
estimation, and combination of data and information from single and multiple sources. This
multilevel model classifies data fusion into four categories.

Level 1 Fusion accomplishes object refinement, or the process of fusing detection-level data to
entity tracks. These tracks contain state-vector information concerning the location and velocity
of a single target and optionally some form of identification, based on the sensor type.

Level 2 Fusion refers to situation refinement and assessment, or the process of fusing Level-1
tracks into groups based on physical location and target identities. Situation assessment is
accomplished by identifying the general purpose or Military Unit Id of the target groups based
on a rule-based or template-based association.

Level 3 Fusion is threat refinement and assessment, which is the process of fusing the Level-2
situation assessment products and related capability data to infer intent of these target groups.

Level 4 Fusion refers to process refinement, which monitors the performance of the first 3
Levels and redirects surveillance assets to improve performance of the overall fusion process and
thereby increasing the quality of the data.

1.2 Nodal Exploitation and Analysis Tools – An Introduction to NEAT

 The function of NEAT is an automation of what is currently done by operators correlating and
associating intelligence reports by hand. This is currently done by either secure radio between
surveillance platforms or ground-stations, or days or weeks after the data was collected. The
amount and quality of correlation and identification of military units by this method is based
solely on the resourcefulness and military knowledge of the operators examining the intelligence
reports. There is a clear need for an automation of this process to allow operators to both cover
greater areas and produce quicker processing times.

 NEAT is a JDL Level-2 Fusion system, which means that it has the ability to locate, classify,
and track military units. It accomplishes this by passing data and control parameters through a
sequence of processing events. This process is outlined in Figure 1.

3

 First, a user supplies a list or set of templates for NEAT to use. Templates contain equipment
and organization descriptions and layout that define military unit types. The selected template set
is effectively the search criteria for all further processing. The operator uses the Unit Selection
Tool to choose military units of interest and form these templates. The selected template set can
either be a single-depth list of military unit types or a “tree” of unit types referred to as a
template hierarchy. Optionally, the user can use the Template Editor to form new templates or
modify existing ones.

 With these selected templates in place, NEAT can begin to process intelligence reports. Level-1
reports from offboard sources are first parsed and formatted by the Generic Intelligence
Processor. The properly formatted reports are then inserted into the Fusion Database used by
NEAT. The Multi-Source Correlator then reads these Level-1 reports and divides them into
correlated lists of radar, radio, and vehicle contact reports.

 At this point a “scene” of data is ready to be processed by the Force Aggregator. A scene
refers to a snapshot of activity over a battlefield for a specific time interval. This time interval
varies with the surveillance assets used, the geographic size of the area covered, and amount of
activity within the area.

Suite of NEAT
Applications

FUSION
DATABASE

TEMPLATE
EDITOR

MULTI-SOURCE
CORRELATOR

USER

All-source
intelligence data

GENERIC
INTELLIGENCE
PROCESSOR

MAP DISPLAY
INTERFACE

TEXTUAL DATA
INTERFACE

Cluster updates

Unit ID updatesSymbol
updates

Text
reportsreports

Correlated intel

Parsed intel

Level 1 intel

Correlated intel
Control

parameters

Cluster updates

Unit ID updates

Template files

Radar, radio, and
vehicle contacts

Control
parameters

Organization and
equipment data

Template
edits

Template and
hierarchy files

Select units for
templating

Tables of
Organization

and Equipment

Order of Battle
 Data Base

UNIT SELECTION
TOOL

AUTO TEMPLATE
SELECTOR

FORCE
AGGREGATOR

CLUSTER
TRACKER

Figure 1- NEAT Application Suite (Sterling Software)

4

 Once a scene of data is collected, the Force Aggregator compares the contact reports with
templates either chosen by the user or selected automatically from a hierarchical tree of
templates. Based on the associations of the contact reports with the template set and other contact
reports, clusters of reports are merged to form nodes. These nodes are classified based on the
content of their group, using the best-fit military template. A track is established for the node by
the Cluster Tracker and is updated as additional scenes of data are received.

 Once processing is completed, the final node reports are displayed on the Map Display
Interface. The display allows detailed examination of the output of the Force Aggregator
including what contact reports are contained in each node.

 NEAT fulfills the role of a Level-2 Fusion system but cannot execute in real-time, and could
take minutes to several hours to process a single scene of Level-1 intelligence reports. Therefore
the usage of NEAT is currently limited to off-line use (non-real-time) to process the reports after
the fact.

 NEAT would become a powerful tool if it could process Level-1 reports in real-time. Operating
from a surveillance aircraft or ground-station, NEAT could monitor military communication
networks for real-time Level-1 intelligence feeds (see Figure 2). It would quickly locate, classify,
and track military units and publish the C2 Nodes across these networks to the operators that
need them. This would provide a situation-awareness on the battlefield that has never been
realized before. Furthermore, by use of custom templates entered by the operator, it could be
used as a trip-wire system to monitor military and non-military activity for a specific event over
an entire area of interest.

H P R T F

JS T A R S R C -135 U -2

R ea l-tim e fusion and
d issem in a tion of C 2N od es

G L O B A L
H A W K

N E A T

Figure 2- Potential of “Real-Time” NEAT

5

1.3 The Force Aggregator

 The unique feature of NEAT is the Force Aggregator, which is the centerpiece application in
the suite of NEAT tools. It includes a number of innovative algorithms to support Level 2 fusion
of correlated all-source intelligence data. These include capabilities to fuse Level 1 radar, radio,
and vehicle contact reports, and then using templating techniques based on Bayesian probability
theory, classify and identify military units and C2 nodes. The Force Aggregator includes a
situation display capability providing the operator access to the results of NEAT Level 2
assessment. The map-based graphical display shows the probable location of NEAT-identified
military units, as well as all contacts that contribute to the identity.

Figure 3 below depicts the process flow diagram of the NEAT Force Aggregator component.

Contact
Association
Computation

Evidence
Network

Algorithm

Contact
Report
Creation

Database
Query/Update

Contact
Clustering

Cluster
Tracking

Cluster
Classification

Radar, Radio. & Vehicle Reports

Contact
Reports

Contact Certainty
Coefficients

Contact Clusters

Updated Cluster
Track History

Military Unit Reports

Military Unit
Templates

Contact
Reports

Contact
Reports

Figure 3 – Force Aggregation Process Flow (Sterling Software)

6

 A short description of each of the NEAT Force Aggregator components follows:

• Database Query - This is the first step in the force aggregation process that obtains a list
of radar, radio, and vehicle intelligence reports produced by Level 1 Fusion applications.
These intelligence reports can be filtered by geographic region, timeliness, allegiance,
affiliation, and so on. A Sybase database is used by NEAT to store and access data.

• Contact Report Creation – The next step in the Force Aggregation process flow creates

a table of contact reports from the intelligence reports. The contact reports are a reduction
of the Intel reports to an efficient format for subsequent classifier processing.

• Evidence Network Algorithm – This is an algorithm for military unit template set

selection. A military unit template is a data structure that describes the composition of a
military unit and contains arguments used by a Bayesian classifier such as prior
probabilities and observation search radii. The goal of the Evidence Network Algorithm
is to select, given the available intelligence data, a military unit template set that is
strongly correlated with the current contact report set and that is consistent with the
probability space partitioning rules of Bayesian probability.

• Contact Association Computation – The fourth step in the force aggregation process is

to take the contact reports created from step 2, and the template set selected from step 3,
and use the Bayesian classifier to compute contact association coefficients. These
coefficients express the relative strengths of the pair-wise relationships between contacts.
The association coefficients are later normalized and biased to express a certainty that the
contacts of a contact pair are or are not members of the same contact cluster.

• Current Clusters – at this point, contacts are grouped into clusters of mutually related

contacts given the certainty coefficients computed in step 4.This is accomplished using a
clustering algorithm which is based upon a greedy clustering algorithm.

• Cluster Tracking – The sixth step in the force aggregation process flow is to perform

Cluster Tracking. The cluster tracker is based on a “Bayesian sonar post-detection
acoustic contact data fusion algorithm” that Sterling Software adapted to the ground
cluster-tracking problem.

• Cluster Classification - The final algorithmic step of the force aggregation process is to

perform cluster classification, where a military unit classification is assigned to each
cluster given the cluster posterior probabilities and military unit prior probabilities.

• Database Update - The final overall step in the force aggregation process is the Database

Update procedure, where new node records are inserted into the Sybase database and the
radar, radio, and vehicle intelligence reports are updated to reflect new entity associations
as identified by the Level 2 fusion process.

7

1.4 Scenario definitions

 Simulated data was used to feed Level 1 Fusion products to NEAT. Many data sets or scenarios
were used during this effort for investigating performance bottlenecks, both in the existing
algorithms and testing/validating the optimized parallel revisions in downstream tasks. Of these,
three main scenarios were chosen to exercise different algorithmic steps within the Force
Aggregator. A brief explanation of these scenarios follow.

• 618th SAM (Surface to Air Missile) Regiment Scenario (SAM-618)
This scenario contains 161 total intelligence reports, consisting of 51 radar reports, 110
vehicle reports, and no radio reports. A template file is used to populate 12 military unit
templates for all force aggregation processing. In this usage of NEAT, the operator is
searching for a SAM regiment within a geographic area, and only SAM templates are
considered. This is the smallest scenario and requires just minutes to execute (single
CPU, serial version), which makes it a good candidate for software validation as it
provides minimal testing time.

• TRAC R6 Division Scenario (TRAC-R6)
This intermediate-sized scenario contains 1,465 intelligence reports spread across 162
radar, 3 radio, and 1300 vehicle reports. A template file containing 18 military unit
templates is used. This scenario contains a motorized rifle division of considerable size
and distribution, and specifically impacts the current clustering algorithm due to the large
number of spontaneous clusters the scenario generates.

• TRAC R61 Division Scenario (SCEN-R61)

This scenario is the largest data set considered in this effort, with 1531 intelligence
reports in 168 radar, 4 radio, and 1359 vehicle reports. This is basically a motorized rifle
regiment with the addition of SAM fortifications. Templates are passed in the form of a
Hierarchy file containing a total of 185 military unit templates. This is a usage of NEAT
where the operator wants an intelligence preparation of the battlefield, and does not
necessarily know what ground units exist. This heavily stresses the contact association
coefficients processing step by greatly increasing the number of templates considered.

8

2. High Performance Real-Time Fusion (HPRTF)

This section will introduce the analysis done to NEAT and work performed to build the
prototype HPRTF architecture. The process-intensive algorithms from NEAT will be identified,
studied, and ported into the HPRTF architecture to allow possible real-time Level-2 Fusion. It
was the goal of HPRTF to produce the following:

• Identification of processing bottlenecks that limit current Level 2 fusion systems from

performing in real-time.
• Development of a hardware requirements trade space for real-time execution.
• Identification of affordable solutions.
• Detailed definition of an affordable, scalable, next generation fusion architecture, which will

support real-time execution of Level 2 fusion systems.
• Development and demonstration of critical portions of a next generation Level 2 Fusion

architecture prototype system that demonstrates the capability of real-time execution.

 To analyze the code to determine where most processing time was spent, the Integrated Sensors
Inc. “RTExpress” product was used as a development, testing, and visualization environment.
Additionally, data transport and distribution libraries in RTExpress were augmented and used to
define the HPRTF system. The top-level Force Aggregation function was written in Matlab™,
with all sub-components of the force aggregation process divided into Matlab-accessible C
functions. This allowed easy source compilation and visualization of performance across
multiple processing nodes using RTExpress and complex data visualization using Matlab graphs
and plots. Further, rapid prototyping of various data distribution and processing concepts were
accomplished at the Matlab level without modifying the algorithm source code.

2.1 Processing Bottlenecks and Solutions

 Of the main processes contained in Figure 1, The Force Aggregator component is the main
limiting factor restricting the NEAT system from providing real-time situation refinement. This
component contains the entire Level-2 Fusion engine used by NEAT. Thus under this task the
primary function within NEAT that will be analyzed is the Force Aggregator component. The
remaining components are not time constraints, rather they serve to configure the Force
Aggregator with templates, feed Level-1 contact reports into it, and display the resulting nodes as
output. In addition, it was not in the scope of this effort to re-write the display portion of NEAT
so the graphic interface was completely reused.

 Later sub-sections will address how each component in the Force Aggregator works and what
processing bottlenecks exist in NEAT. Each bottleneck identified will include a data-flow
diagram to aid in the understanding of its function. While this section will detail force
aggregation processing bottlenecks within NEAT, it should be noted that NEAT serves only as a
test case to the HPRTF architecture. HPRTF and its assumptions and requirements should be
generic to all Level 2 Fusion systems.

9

2.1.1 The Sybase Bottleneck

 NEAT uses a Sybase database as a back plane to manage contact report data and the resulting
fused products. Sybase is not a real-time database and represents a significant non-processing
bottleneck. If reduced, significant time savings could be gained. Access to Sybase on some HPC
platforms may be difficult and slow, and there is no desire to tie a Sybase dependency into
HPRTF. Sterling Software had originally implemented a data cache system to regain some of the
performance lost to Sybase. This cache system could be reused to form a shell around the Force
Aggregation code to both allow the algorithms to function with minimal code changes and allow
execution without the use of Sybase (see Figure 4). Eventually HPRTF will be interfaced to the
original NEAT system. This will require a file or socket connection to allow two-way
communication between NEAT and HPRTF hosts. These requirements will be kept in mind
while evaluating hardware architecture solutions in section 3.

2.1.2 Sybase solutions - Data Transport Mechanism HPC-Link

To satisfy both a demonstration layout where both NEAT and HPRTF systems communicate in
real-time such as with sockets over Ethernet LAN, and an engineering/testing setup where the
same inputs can be run through HPRTF while rapidly changing fusion parameters and code
development; the HPC-link module was created.

HPC-link exists as a C library that allows the transfer of Level-2 Fusion I/O between software
applications running on the same or different machines, with varying operating systems and
endian-order representations.

NEAT
Algorithms

Data
Cache

Sybase
Database

NEAT
Specific

Fusion
Level 2
Specific

Sun/Sybase
Specific

Figure 4 – NEAT Data Access Layers

10

 Additionally, a small set of visualization tools was developed to construct and verify test case
cache files on both the input and output side of the force aggregator. A “log” program was
written which flattens the binary cache file into understandable ASCII text. The NEAT
debugging printout format was used to clarify the data contents during discussions with Sterling
Software. The log application also served as a line-by-line data porting check for implementation
on hardware architectures with various data alignment differences. A “split” function was also
developed to divide NEAT-generated contact report cache files into sub-cache files containing
segregated data. These sub-cache files could then be reassembled using simple Unix shell
utilities by concatenating the binary files into a new test case. For example, the split application
would separate a particular cache file into radar, radio, vehicle, and node files. By reassembling
the files without the node reports from the previous run, a static “no history” scene could be
generated. Or perhaps the individual files could be investigated using the log application or
plotting data values in Matlab. Figure 5 summarizes data flow in and out of HPC-link.

Mercury PPC

Sun Ultra

Linux PC

Sun Ultra

HPC-link Matlab

HPC Split

HPC Log

NEAT HOST

HPRTF HOST UTILITIES

Figure 5 – HPC-link and Utilities

11

2.1.3 Data Distribution and Collection Library

 The first version of the stand-alone Force Aggregator was completed shortly after the
completion of HPC-link and related utilities. This was a single-processor configuration which
simply wrappered most of the Force Aggregation process under one Matlab function wrapper. A
data transport software package was now required to facilitate execution across multiple
processing nodes. This library augments the core RTExpress message-passing layer which
utilizes MPI for all low-level operations. These augmentations were required due to the
complexity and size of data associated with the Level 2 Fusion process. Figure 6 is a table of
these data management functions.

DispListInfo Displays an entire list of Level 1 Intelligence records in ASCII for a given

cache mxArray.
DispRecord Displays one Level 1 Intelligence record in ASCII, given the cache

mxArray and report index.
DistScatter Scatters data by columns using RTExpress™ redistribute functions.

Case 1: Group-leader-only - data is dispensed from the group leader to
every member in the group. A full copy of the data matrix is sent to all.
Case 2: Local mxArray - each CPU has a total copy of the mxArray and
uses redistribute to slice the mxArray by columns. There are only local
transfers in this case. Data is not transmitted between processing nodes.

LeadColAdd Will perform a column add on the group-leader-only matrix. Matrices from
worker nodes are converted to sparse matrices before collected by the
group leader.

LeadGather Gathers data that has been distributed (in columns) to the group leader.
Will also concatenate data together that is not distributed to the group
leader.

LocalGather Will gather data that is distributed or local to every group member. Will
also concatenate data together that is not distributed to every group
member.

LocalScatter Scatters data from the Group Leader to every member in the group where
the data is distributed by columns from the input mxArray to the output
mxArray. This function only scatters data that is not already distributed.

MatrixLoad Loads any binary mxArray form from disk file.
MatrixStore Stores any binary mxArray data to disk file.
Sparse Creates a sparse matrix from a full matrix. Binary data can be passed as the

full matrix and data compression can be applied.

 Figure 6 – Data Distribution and Collection Functions

12

2.1.4 Evidence Network Algorithm

The Evidence Network Algorithm is a composite, nested C++ object consisting of 8,000+ total
lines of source code. It is the first step in a chain of processing events that forms the Force
Aggregation function. Its main purpose simply stated is to select a reduced set of templates given
a list of contact reports as input. Observation vectors are formed at each contact report location,
class-conditional probability is computed for each template, and a collectively exhaustive and
mutually exclusive template list is produced given the input contact set. This process is
illustrated in figure 7. This was designed to alleviate the processing load involved in all
downstream template-based computations by reducing the amount of templates in the processing
cache.

 When first investigated, processing time spent in the Evidence Network Algorithm was
exaggerated by equipment and organization look-up function calls that used costly array-search
loops. This originally accounted for up to 77% of the total time for a run. This was immediately
optimized by studying how the table look-ups were used, limiting their usage, and optimizing the
functions themselves. After which, it was found that 2-32% of processing time was spent in the
Evidence Network. This wide time range was a result of the two processing modes in the
Evidence Network, template set and template hierarchical processing. “Template set” refers to a
single list of templates specified by the operator for force aggregation. In this mode, the
Evidence Network Algorithm is largely bypassed and the fusion system is used to find and
identify military unit types of interest to the operator. In the Hierarchical mode, an entire
hierarchy of templates is passed to the fusion system and the Evidence Network is utilized to its
full potential by selecting templates within the template tree that relate to contact reports in the
scenario. The remaining templates from the hierarchical list are discarded.

Evidence
Mode? N

Y

Template
Normalization

Military Unit
Templates

Templates read from file

Contact loop

Contact
Reports

Template loop

Search radius loop
Observation loop

Posterior Prob.
Propagate
 Evidence Net

Templates with
highest probabilities

Normalized
Template

Cache

Figure 7 – Evidence Network – First Look

13

2.1.5 Evidence Network Solutions

 The portion of the Evidence Network that best offered itself to parallelization is the observation
step where observation vectors are generated for every contact report. The observation-
processing loop also constitutes nearly 90% of processing time in the Evidence Network
Algorithm when in template-hierarchical mode. While in this mode, a data-parallel method was
chosen for implementing this parallel step where the contact report list is initially divided across
all processing nodes for the observation vector computation. In the case of a template list mode,
where the operator has already pre-selected the templates, this processing step is skipped all
together. In either case the complete template set is required on every processing node and is
distributed by file using the original NEAT access functions. The results are then merged on the
group leader (processing node 0) and the remaining portion of the algorithm runs sequentially.
Figure 8 below illustrates the data flow of the parallel Evidence Network Algorithm.

 The Evidence Network Algorithm also utilizes table look-up functions for military unit
organization and equipment references. When possible, these function calls were optimized and
in some cases the usage of the organization and equipment tables were aligned such that only one
table search occurred per template.

Evidence
Mode? N

Y

Template
Normalization

Military Unit
Templates

Templates read from file

Contact loop

Contact
Reports

DistScatter()

Data Parallel

Template loop

Search radius loop

Templates read from
file by all CPUs

Originally accounted for
>90% of time spent in
evidence network. Reduced
to less than 20% when table
lookups were optimized.

Observation vectors
computed in parallel when in
evidence (HRC file) mode.

Observation loop

Posterior Prob.
Propagate
 Evidence Net

Templates with
highest probabilities

Normalized
Template

Cache

Figure 8 – The Parallel Evidence Network Algorithm

14

 The greatest amount of table look-ups occur in the final “Template Normalization” step. This
originally accounted for more than 90% of the time spent in the evidence network, reduced to
20% after optimizations. Figure 9 illustrates these processing time improvements realized by
sequential and parallel optimizations.

2.1.6 Contact Association Coefficients

 After optimizing the evidence network algorithm and the associated table look-ups, the “Create
Contact Association Coefficients” step was responsible for the bulk of time (65-72%) spent in
processing. This was a 600-line brute-force nested loop where observation vectors were formed
for every contact report, class-conditional probability computed for each template, and the
posterior probability of each military unit combined to form a contact association matrix. Figure
10 shows the nesting of each processing loop.

Contact Report Loop

Template Loop

Template Search-Radius Loop

Get Observation
Compute Posteriori Probability
Accrue Contact Association Data

Execution Time in Seconds (SAM-618)

191

21/9
1 / .6

0
50

100
150
200

Original Intermediate Final

1 cpu 4 cpus

Figure 9 – Evidence Network Performance Improvements

Figure 10 – Contact Associations – First Look

15

 This computation was necessary as every contact report ultimately needed to be compared with
every template. Processing time could be reduced by optimizing the inner-most loops where
most execution time was spent, or perhaps swapping the contract loop with the template loop if
necessary, but this component best offers itself to parallelization. A data-parallel method here
would seem to be optimal.

2.1.7 Contact Association Coefficients Solutions

 The solution used to implement this step was to distribute the contact report list across all
processing nodes in a data-parallel manor and streamline the observation and association-data
access functions. Alternative approaches were also tested, distributing the templates in data-
parallel and processing the entire contact list across all CPUs, but this did not align well with the
neighboring fore and aft algorithms which required all templates passed to all processing nodes.

 When this algorithm was first investigated, it was found to contain sequential array/table
searches that exaggerated its slow execution speed. These sequential look-up functions were
changed to hash-tables and the surrounding data access functions re-written to use references
instead of passing data. The use of data references on the innermost loop resulted in a 50%
speed-up of that section alone. Additionally, usage and walking of linked-lists were avoided
when possible to reduce execution time further. The “GetObservation” function contained many
linked-list access calls. A 30% speed improvement was achieved by avoiding linked-list access
when possible. Figure 11 shows where in the processing steps these optimizations occurred and
Figure 12 summarizes performance improvements. Processing time for this function was reduced
by more than 50x (583 to 11 seconds in the Trac_R6 scenario) once all functions were
optimized. The majority of the time improvement resulted from the hash table implementation.

Contact
Reports

For each Template

DistScatter()

Data Parallel
Templates

For each Contact
All data to all

processing nodes

For each Template
Search-Radius

GetObservation

Compute Probabilities

Sum Contact Assoc.

90% of module time
originally spent here.
Many optimizations.
Reduced time by
30% by avoiding
linked-list access and
using cache array.

Originally accounted
for 25% of total time.
Reduced time by half
by using references
instead of passing large
amounts of data.

Contact
Association

Tables

Partial contact association tables
later collected onto group leader
using sparse() and leadColAdd().

Figure 11 – Parallel Contact Association Coefficients Computation

16

2.1.8 Build Current Clusters

 The “Current Clustering” Algorithm represented the most difficult step to parallelize. This 2000
plus line module was responsible for building clusters from the current contact report set using
the contact certainty coefficients (normalized from the contact association coefficients). It was
the largest memory consumer of all force aggregation sub-components and could grow between
5% to 80% of execution time depending on scenario content. Low memory conditions and
disk/memory swapping were responsible for longer execution durations. The Current Clustering
Algorithm contained two main processing steps. First, a “coarse clustering” processing loop
occurs where the contact certainty table was traversed and clusters were spawned for all contact
reports. A significant amount of memory (in some cases 200+ Mb) was used at this point as there
existed as many clusters as contact reports and each cluster contained multiple contact report
lists. This processing loop used the majority of time spent in current clustering, and needed to
have access to all clusters it generated as the loop iterated, which did not immediately lend itself
easily to parallelization. The second loop merged these spontaneous clusters and formed the
current cluster table. These two main processing steps are show in Figure 13.

Figure 12 – Contact Association Performance Improvements

Execution Time in Seconds (TRAC-R6)

21 / 7
71

108

40 / 13
18

0

50

100

150

Original Initial Intermediate Final

1 cpu 4 cpus

17

2.1.9 Build Current Clusters Solutions

This component is identified as a high-bandwidth step and shouldn’t lend itself easily to
parallelization. However an alternative solution was tested using a parallel coarse clustering
function but no improvement was gained. Due to the nature of the algorithm and amount of
memory it requires, it was decided that this step should remain sequential on a single CPU. With
optimization in mind, Sterling Software re-wrote this module to function several times faster
than the original. In addition, hash-table functions developed for the Contact Association
Coefficient Computation were reused in this step to greatly reduce the “coarse clustering” step.
The optimizations occurred on inner processing loops and resulted in big improvements,
reducing time spent in “Coarse Clustering” from 10 minutes to 11 seconds. Memory usage was
still a factor, and the algorithm was later modified to use a much reduced-size contact-report list
format that resulted in this step using a tenth of the memory than it used before. This was
possible because many fields in the contact report structure were unused or utilized larger-than-
necessary data types. Figure 14 documents sequential optimizations made to this Force
Aggregator component. Final performance improvement was more than 10x over the original
optimized version (1.4 seconds using the Trac_R6 scenario, see Figure 15).

Coarse Clustering Loop
Combine
Create
Include
Exclude

Cluster Merge Loop
Minimize
De-allocate

Interim Current cluster list

Contact
Reports

Contact
Certainties

Merged Current cluster list

Figure 13 – Current Clusters – First Look

18

Coarse Clustering Loop
Combine
Create
Include
Exclude

Cluster Merge Loop
Minimize
De-allocate

Interim Current cluster list

Originally used more
than 250Mb here,
reduced to 24Mb after
memory optimization.

Optimization of table
lookups reduces time
from 10 minutes to 11
seconds for this loop.

Algorithms later
streamlined by
Sterling Software.
Total time for both
loops = 1.4 seconds.

Parallel version tested.
Performance loss due to
messaging overhead.
Minimal time spent in
this step justifies leaving
it sequential.

Current cluster list

All timing and memory data is based on the TRAC-R6 scenario.

Execution Time in Seconds (TRAC-R6, single CPU)

1.4
1011

583

1

10

100

1000

Original Initial Intermediate Final

Figure 15 – Current Clustering Performance Improvements

Figure 14 – Optimized Current Clustering Algorithm

19

2.1.10 Reference Cluster Processing

 Some time was spent investigating performance losses outside the formally declared bottleneck
areas and optimized as well. The “reference cluster processing” event is composed of several
algorithmic functional steps, which associate and merge new current clusters generated for the
current scene with reference clusters from the previous scene. This effectively produces time-
smoothed tracks of military units based on the instantaneous noise-laden current cluster samples.
The reference cluster-processing step required two operational modes based on the scenario-
state. If reference clusters exist from a previous interval, then this step automatically was run in
parallel. Otherwise, if this was the first scene and no reference clusters exist, then reference
cluster processing was kept on the group leader and is run sequentially. This was implemented
due to the fact that the majorities of processing “for-loops” from this step iterate on the reference
cluster list and therefore become a no-op when no reference clusters exist. This was too
expensive to execute on multiple processing nodes when the majority of time in this step was lost
to messaging overhead in the distribution of the current cluster list and the collection of the
resulting reference clusters. In this case the algorithms execute on one CPU only.

20

3 Fusion Architecture Evaluation and Definition

 At this point the bottlenecks within the Force Aggregator have been investigated and the
reasons for the processing limitations known. The objective of this section is to define an
affordable, scalable next generation fusion and exploitation architecture that is capable of
supporting the real-time Level 2 assessment. For purposes of this program it is assumed that real-
time assessment information needs to be provided in minutes or seconds. Currently, assessment
information is on the order of approximately ½ hour to several hours dependent on the scenario
that is being processed.

 The basic requirements summarized from results from the last section are listed below.

• A large amount of memory is required per processing node. Level-2 Fusion algorithms
utilize template-based detection and identification which requires a substantial amount of
temporary memory.

• There exists a need for high inter-node bandwidth to transport detailed Level 1 contact
reports in and out of the algorithmic steps within the Force Aggregator.

• C++ Support is required. The Evidence Network and Equipment/Organization tables are
written completely in object-oriented C++. Conversion to C is possible but
developmental costs would be great.

 A number of hardware architecture platforms were evaluated and tested to determine their
potential as the next generation Level 2 fusion and exploitation architecture platform. Candidate
platforms considered were COTS Embedded platforms, adaptive computing platforms, and
Linux Beowulf clusters. Major considerations when considering these systems were the cost and
availability of the machines at the time of this task. The cost of each solution included the actual
cost to purchase the system and support software, and the cost and/or difficulty of modifying the
existing Level 2 Fusion system in order to support the proposed architecture solution.

 A brief summary of each proposed system follows.

3.1 COTS Embedded Computing Architectures

 The Mercury Embedded system was evaluated with great detail, leading to an implementation
of the NEAT Force Aggregator on the 16-Node Mercury RACE® system at Integrated Sensors
Inc. Mercury has an outstanding record of robustness, reliability, and software support. However
this “comes at a price” as this is the most expensive system considered in this hardware trade
study. Mercury systems, as well as all other Embedded system types, tend to offer a larger
number of processors than other platform architectures and higher inter-node bandwidth but
often with the least amount of available memory per processor (128-256Mb maximum today).

21

 The predominant chip technology that Mercury is basing their product offerings today is the
PowerPC™ chip, specifically the AltiVec™ series PowerPC processor. The advantage of the
AltiVec chip is that it provides both general-purpose processing performance and high-
bandwidth data processing for algorithmic intensive computations on a single chip. In order to
achieve this capability in previous applications, a two-chip solution was required.

 Mercury as with other embedded processing architectures can be used in conjunction with a Sun
workstation used as a co-processor. This poses an excellent potential solution for NEAT as the
internal Sun workstation could run Sybase and NEAT, and the Force Aggregator would be
ported to and executed on the selected embedded hardware. Mercury™ also offers ruggedized
systems and has an extensive background in military applications.

 However, Mercury as well as other COTS embedded computing architectures are very
expensive in both hardware and software products when compared to alternatives.

3.2 COTS Adaptive Computing Architectures

 Adaptive computing hardware is generally considered to be field programmable gate array
(FPGA) boards. An FPGA processor can be modified at almost any point during their usage to
adapt to changing requirements as they evolve. When the application system is upgraded and the
algorithms modified, an FPGA can be reprogrammed to meet the evolving needs. This is not a
stand-alone computing architecture, but would be used in conjunction with either COTS
embedded computing architectures or Beowulf Linux clusters.

 The two main chip technology companies that are providing commercial FPGA boards are
Xilinx™ and Altera™. Xilinx currently is one of the major providers of FPGA chips that are
being used on commercial boards, where each chip is capable of supporting 1-2 million gates.
The Annapolis WILDSTAR™ board is an example of a commercial FPGA board that is based
on Xilinx parts.

 The WILDSTAR board requires the use of the VHDL programming language to define a
logical state diagram. While a WILDSTAR emulator was available to speed code development
and validation, time spent in software development was costly. Additionally, the Bayesian
algorithms within the force aggregator did not lend themselves easily to the FPGA architecture.
The WILDSTAR board seems to be more suited for signal and image processing where data
sizes are constant and algorithmic operations are predictable and for the most part, repetitive.

22

3.3 Beowulf Linux Clusters

 A low cost candidate solution for the next generation Level 2 exploitation and fusion
architecture is the Beowulf class of supercomputers. A Beowulf machine is built from
commodity parts such as personal computers and workstations and is connected together using
high-speed networking hardware such as Myrinet™ or GigaNet™ to achieve supercomputing
speeds. Beowulf actually refers to a special version of the Linux operating system modified to
function across multiple computers and allows the user to utilize one large virtual machine.
However, a more common alternative is the installation of ‘normal’ Linux on all processing
nodes, and configuration of network and security of the machines to allow easy host-to-host
access. The later option, with a GigaNet network connection, is the trial machine for this
consideration.

 The Beowulf is the lowest cost hardware and software solution, and also offers the highest
memory per processing node (512Mb-1Gb). The processing nodes are simple desktop PCs and
all software that is required for this system is free. However, the GigaNet network layout (110
Mb/sec maximum) is considerably slower than Mercury’s Raceway (267 Mb/sec).

3.4 Trade Space comparison

 Figure 16 compares and summarizes the various performance aspects of the proposed solutions.

Computer

Memory
Per CPU

maximum

Intra-Node
Bandwidth

C++
Support

Hardware
Costs

(per Gflop)

Software
Costs

Hardware
Maint.

Software
Maint.

Mercury 128 Mb 267 Mb/s Yes ** $6,940 *** $11000 Low Low
CSPI 256 Mb 242 Mb/s Yes $5,520 *** $8800 Low Low
Linux 1 Gb+ 110 Mb/s* Yes $400 *** $0 Moderate Zero
Wildstar 12 Mb 267/242 No N/A $15000 Low Moderate

 *Bandwidth based on GigaNet™ back-plane.
 **Mercury PowerPC C++ Developer’s toolkit available at approx. $10,000 additional cost.
***Average cost per GFLOP across 2, 4, and 6 processing nodes.

 Due to the Beowulf’s overwhelming low cost, availability of memory per node, and
performance potential, it was chosen as the hardware architecture solution for the HPRTF
system. During development and testing, ISI leveraged an already existing in-house Linux
Cluster. A large 64 node+ Linux Cluster in building 106 at the AFRL Rome Research Site will
provide an installation and demonstration platform.

Figure 16 – Trade Space Comparison Summary

23

4 HP-RTF System Validation

 At this point the HPRTF system was prototyped and tested against scripted test cases. The
software architecture facilitated a parallel Force Aggregation function but remained stand-alone
from the original NEAT architecture. Under this task the HPRTF system was to be validated and
verified by integrating HPRTF as the Force Aggregator component into the existing NEAT
system. This is in essence returning the divorced Force Aggregator back to the software system it
originated from. This was accomplished by using the HPC-link data transport object (see Section
2.1.2 and Figure 5), which had previously been used only in “file” or “offline” mode during
software development and testing in Section 2. The socket mode of HPC-link uses the same file
descriptor and read/write commands as in disk/file mode, and so was easily adapted to network
communication. Additional work was performed on the NEAT host-side to correctly utilize
HPC-link for NEAT-to-HPRTF timings and data transfers. This setup is illustrated in Figure 17.

 However, it became desirable to write the input cache (Level 1 Intelligence reports) to a file
shared across NFS to the HPC machine. This allows modules in HPRTF the capability to read
and process the input data cache directly from disk, preferably a disk mounted on the HPC
system. This offered a performance improvement as all processing nodes can simultaneously
read, parse, and process the intelligence reports without waiting for the group leader to receive
and distribute the data from a single TCP socket over a standard LAN.

 NEAT/HPRTF Integrated Testbed

Sun-Ultra Console

M ap Display

Nodal Aggregation Tool

Force Aggregation

Sybase

HPRTF
Linux Cluster

HPC-Link Offline File,
TCP socket, or
NFS-based file
with semaphore

Original NEAT
software suite

Also Tested on
Mercury™ HPC

Figure 17 – NEAT/HPRTF Integrated Testbed

24

5 Demonstrations and Results

 All original tasks of the HPRTF effort were completed. Processing bottlenecks that limited
NEAT from performing in real-time were identified. The major performance bottlenecks
included Sybase access, the Evidence Network Algorithm, the Contact Association Computation,
and the Current Clustering Algorithm. After which, a development of a hardware requirements
trade-space comparison was made to identify affordable solutions. Linux was chosen as an ideal
implementation platform, but the code was also built and executed on Mercury and Sun
platforms to test portability.

 The fusion architecture was then prototyped using RTExpress and Matlab tools. HPC-link and a
robust Level-2 data management library formed the HPTRF backbone. Algorithms from NEAT
were wrappered in HPRTF, parallelized, and tested. Many software development iterations
occurred to test different implementation strategies and perfect the system to achieve maximum
performance.

 The HPRTF system was then integrated with the original NEAT tool suite to validate the
system as a whole. Minimal time and effort was spent on this effort as the GUI front-end to
NEAT was reused. This allowed the use of the original NEAT operator interface to drive the
HPRTF fusion engine, as well as the many other NEAT components which read and write from
the Sybase database.

 Demonstrations of working HPRTF prototypes were held at both ISI and the Rome Research
site. The sequential Force Aggregator was demonstrated on Sun, Mercury, and Linux platforms
during a status meeting 20-Nov-01 at ISI. The purpose of the demonstration was to show
portability of HPRTF and RTExpress between hardware architectures. This consisted of HPRTF
running on a single processing node on an HPC and the NEAT host software running on a Sun
Sparc.

 A second demo occurred at 10-Apr-01 where the parallel Force Aggregator was run on a 4-
node Linux cluster, connected to the NEAT host GUI running on a Sun Sparc. In addition, a
side-by-side comparison was demonstrated with both the original NEAT software build and the
integrated HPRTF version running on the Linux cluster. Figure 18 depicts the demonstration
layout.

25

A p ril-0 1 D em o L ay o u t

S u n U ltra 1 0

M a p D isp la y

N od a l A g gre ga tion T o o l

F orc e A ggre ga tion

S yb a se

N od a lT rac k
H P R T F

L in u x C lu ste r

 A third demo occurred at 4-Sep-01 where the parallel Force Aggregator was run on 5 nodes on
the HADES Linux Cluster located in building 106 at the AFRL Rome Research Site. NEAT was
installed onto a neighboring Sun Sparc workstation to replicate the appearance of the previous
April-01 demonstration. The three test-case demonstration scenarios, SAM-618, TRAC_R6, and
SCEN-R61 (see Section 1.4 for scenario descriptions), were demonstrated using the NEAT GUI
on the Sun host while running the Force Aggregation process on the Linux Cluster. In addition, a
side-by-side comparison of the Force Aggregators was demonstrated with both the original
NEAT software build and the integrated HPRTF version running on the Linux cluster.

 Performance results from the HPRTF project met the original requirement and goal of real-time
Level-2 Fusion. “Real-time” in this context is the ability to provide JDL Level-2 situation
assessment in minutes or seconds. Where the original software/hardware required hours to run,
the HPRTF version ran in minutes. In cases where the original product required minutes to run,
the HPRTF version functioned in seconds. A summary of performance improvements is shown
in Figure 19.

Figure 18 – April-01 Demonstration Layout

26

 Performance improvements were not limited to parallelizing existing algorithms across multiple
processors. The sequential algorithmic processing was optimized as well, keeping in mind
parallelization of a non-optimized function does not yield the best results. Figure 20 illustrates
the scalability of the HPRTF implementation. This is followed by Figure 21 that offers a
performance comparison between the final results and the initial Linux software build. This
comparison reflects both sequential and parallel improvements combined. In all trials the
software was executed on 600Mhz PC CPUs.

 Compared to the original Force Aggregator, these final results show an average speed
improvement of 47x when HPRTF is executed on one CPU, and 95x average improvement when
run on 4 CPUs. This means that the Force Aggregator ran an average of 47 times faster with
sequential optimizations alone, and averaged 95 times faster when run in parallel on 4 CPUs.
Better gains in performance were made possible in the parallel version by first streamlining
processor and memory usage in the sequential version. This demonstrates the importance of both
sequential and parallel optimizations to improve speed performance.

Performance Improvements
Overall Summary

67 12 1.28

1200

186
11.5

2760

413

22.3
0

500

1000

1500

2000

2500

3000
T

im
e

in
 S

ec
on

ds

sam_618 Trac_R6 Scen_R61

Initial Build
Optimized Sequential
Parallel Linux Version - 4 cpus

Figure 19 – Performance Improvements Summary

27

Performance Scalability
Linux Cluster – 600 MHz CPUs

1.49 1.28

26

16
13 11

54

34

26
22

0

10

20

30

40

50

60
T

im
e

in
 S

ec
on

ds

sam_618 Trac_R6 Scen_R61

1 CPU 2 CPUs 3 CPUs 4 CPUs

…

Figure 20 – Performance Scalability

Relative Performance Improvements

44x 52x 46x

109x

51x

125x

0

20

40

60

80

100

120

140

P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

sam_618 Trac_R6 Scen_R61

1 CPU 4 CPUs

Figure 21 – Relative Performance Improvement vs. Initial Build

28

 Figure 22 above shows an RTExpress display which depicts what each processor is doing and
for how long, and gives insights to timing issues across multiple nodes. Shown is the parallel
Force Aggregator processing the Trac_R6 scenario running across four 600 Mhz CPUs.
Execution time runs from left to right. Colored sections are processing intervals and gaps
indicate idle or a wait condition. The highlighted bands near the end of the Contact Association
Coefficients and Reference Clusters indicate inter-processor communication, or the passing of
data between CPUs.

Contact Association Coefficents

Evidence Network
Intel report + template input

Current Clusters

Reference
Clusters

Cluster Classification
C2 Node output

Figure 22 – RTExpress Visualization

29

 Figure 23 illustrates RTExpress visualization of multiple runs using an increasing number of
CPUs. Depicted is the parallel Force Aggregator processing the Trac_R6 scenario. To the left are
graphical representations of what each CPU was doing during the run. See Figure 22 for details
concerning each of the RTExpress windows. The graph to the right is a composite report of the
results from each run. Shown here is the amount of time spent in each Force Aggregator
algorithm versus number of CPUs used. From this one can easily see the performance
improvement gained from each additional CPU. The diminishing gain as more processors are
added is common in the field of parallelization and is due to increasing time in messaging
between CPUs.

0

5

10

15

20

25

30

1 2 3 4

Contact Associations
Build Current Clusters
Classify Reference Clusters
Other

1 CPU
26.9 total
21.2 assoc
1.4, 1.2

2 CPU
16.9 total
12.0 assoc
1.4, 1.2

3 CPU
13.3 total
8.3 assoc
1.4, 1.1

4 CPU
11.5 total
6.6 assoc
1.4, 1.1

T
im

e
in

 S
ec

on
ds

of CPUs

Trac_R6_div Scenario - 1465 contact reports
Final Parallel Results

Figure 23 – RTExpress Visualization, 1-4 CPUs

30

6 Conclusions

 The HPRTF program was able to define, prototype, and demonstrate an affordable next-
generation real-time fusion and exploitation architecture that supports JDL Level 2 fusion. The
developed architecture focused on requirements of JDL Level 2 systems, and alleviated the
performance bottlenecks that limited NEAT from providing real-time fusion assessment. The
parallel and sequential optimizations were accomplished by using RTExpress as a development
and diagnostic tool. Compute-intensive algorithmic modules were identified and parallelized.
Then using RTExpress visualization tools and the understanding of the algorithmic steps within
the Force Aggregator, sequential optimizations were applied to improve performance further.
The prototype was installed in building 106 at the Rome Research Site, Rome, NY, and
demonstrated at the final meeting. A development environment was also installed to facilitate
integration and reuse of the HPRTF products with other projects after completion of the HPRTF
contract.

 It is hoped that this product either bundled with NEAT as a parallel real-time force aggregator
or as the developmental fusion architecture alone, is reused to the fullest extent possible. One
possible follow-on effort is the wrappering and interfacing of HPRTF/NEAT as a JBI Fuselet,
where the system would act as a real-time Level-2 Fusion agent. This fusion outlet could
subscribe to Level-1 intelligence streams, compute the battlefield situation assessment, and
broadcast military units at their estimated locations in real-time. There is no other system
available that can provide this function in real-time.

31

7 List of symbols and abbreviations

C2 nodes Command and Control Nodes or military unit clusters
COMINT Communications Intelligence
Contact Report An intelligence report equivalent to a JDL Level-1 track with ID
COTS Commercial off-the-shelf technology
CPU Central processing unit, also equivalent to “processing node”
Data Parallel A parallelization technique where algorithmic processes remain relatively

unchanged but the data it processes is partitioned across processing nodes
Force Aggregation JDL Level-2 Fusion, or situation refinement of Level-1 reports into

aggregate clusters
FPGA Field programmable gate arrays
GigaNet A 3rd party PCI-based network hardware and software package
Group leader Lead processing node or CPU within a multi-processor machine
HPC High Performance Computer, generic for multi-processor computers
HPC-link File/Socket software interface between NEAT and HPRTF
HPRTF High Performance Real Time Fusion Architecture
JDL Joint Directors of Laboratories
LAN Local Area Network
MTI Moving Target Indicator
MxArray Matlab™ generic storage structure type for all data types
Myrinet™ A 3rd party parallel-based network hardware and software package
NEAT Nodal Exploitation and Analysis Tools – a JDL Level-2 fusion system
NFS Network File System
Processing node Single logical node in a multi-node computer. Equivalent to “CPU”
Raceway® Mercury™ high-speed inter-node communication network
RTExpress “Real-Time-Express” development software used to build and debug

source code across multiple HPC hardware architectures
SAM Surface-to-Air Missile, or the battery that supports it
Semaphore Software-level signal to key processes on the same or different machine
SIGINT Signal Intelligence, specifically those emitted by radars
Template A single military unit template describing equipment and organization

32

8 Appendix A - Hardware Trade Study

This appendix presents a study and comparison of available high-performance computing
architectures for the implementation of the HPRTF system. There were three systems compared
across seven attributes.

The systems compared were:

1. Mercury
2. CSPI
3. Linux Clusters

The attributes investigated were:

a. processing power
b. hardware cost
c. software cost
d. space and weight requirements
e. air flow requirements
f. power requirements

The following pages will detail this study.

33

8.1 Mercury

Figure 24 - Mecury Nodes vs. Processing

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

Number of Nodes

T
im

e
in

 se
co

nd
s

FFT FFT inplace Corner Turn

34

Base System Requirements (2001 prices)
Chasis (21 Slot 6U VME) $42,300
Motherboard (MCJ6-VH) $4,800
C Development and Runtime $11,000
RACEWAY Interlink $2,300
Daughtercards $17,600 each (P2J128J-Q-VH)
2 nodes with (1400Mhz PowerPC, 128Mb RAM) each Race++

Figure 25 – Mercury Nodes vs. Cost

$0
$20,000
$40,000
$60,000
$80,000

$100,000
$120,000
$140,000

0 2 4 6
Number of Nodes

C
os

t i
n

D
ol

la
rs

Software Chassis Motherboards
RACEWAY Daughter Cards

35

Figure 26 – Mercury Power and Air-Flow Requirements

365
CFM

730
CFM

Maximum
AirFlow

6U Series

9U and Hybrid
Systems

20A
115v

20A
220v

15A
208/3

M
ax

im
um

A
m

pe
ra

ge 1000W 6U/9U
1600W 6U/9U
3600W 9U

36

Figure 27 – Mercury Weight

Chasis

75
95

Pounds 6U Systems

9U/Hybrid
Systems

73

74

75

76

77

78

79

0 2 4 6

Number of Nodes

W
ei

gh
t i

n
Po

un
ds

Chassis Motherboard Nodes

37

Figure 28 – Mercury Space Requirements

MERCURY CHASIS 6U Series 9U and Hybrid Systems

Dimensions (HxWxD) 17.5x19x21 22.75x19x28
Weight 75 lbs 95 lbs
Air flow 2x365 CFM fans 2x365 CFM fans
3.3 volts 120a 160a

Input voltage 100-120 VAC, or 200-240 VAC, or 208-3 phase
Frequency 50-60 Hz

Temperature 5-40 deg C
Altitude 8000 f t
Noise 65 dBA

17.5

19

21

6U

Rack-mountable

22.75

28

19

9U

Rack-mountable

38

8.2 CSPI

Figure 29 – CSPI Nodes vs. Processing

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

Number of Nodes

T
im

e
in

 se
co

nd
s

FFT FFT inplace Corner Turn

39

Basic System Requirements (2001 prices)
Chassis (6 slot VME_) $16,650
Development and Runtime $8,800
M2K Backplace overlay $5,100
Processor Boards $50,906
CSPI 2841, 4x400Mhz PowerPC, 14 Gflops)

Figure 30 – CSPI Nodes vs. Cost

$0
$20,000
$40,000
$60,000
$80,000

$100,000
$120,000
$140,000

0 4 8
Number of Nodes

C
os

t i
n

D
ol

la
rs

Software Chassis Backplane Processor boards

40

Figure 31 – CSPI Power and Air-Flow Requirements

Chasis

12
14Maximum

Amperage
at 120v

12-Slot
21-Slot

300
CFM

410
CFM

Maximum
AirFlow

12 Slot
21 Slot

41

Figure 32 – CSPI Weight

Chasis

55

80

Pounds 12-Slot
21-Slot

0

0.5

1

1.5

2

2.5

Pounds

2741 2721 2841 2821
Processor Boards

42

Figure 33 – CSPI Space Requirements

CSPI
2741/2721 2841/2821

4 cpus 2 cpus 4 cpus 2 cpus
Processors 400Mhz PowerPC 750 400Mhz MPC7400 w/AltiVec

Memory 256 Mb 128 Mb 1 Gb max 512 Mb max

Node Bandwidth Myrinet on VME Myrinet on VME

Advertised Speed 3.2 GFLOPS 1.6 GFLOPS 14 GFLOPS 7 GFLOPS

Weight 2 lbs 1 lb 2 lbs 1 lb

Temp Range 0-50 deg C at 12 CFM 0-50 deg C at 12 CFM

Altitude <10000ft <10000ft

Humidity 5-90%

Power 45.2 Watts typical, 62.0 watts max 25 watts 14 watts
Power 3.3v 25 14 26 14.5
Power 5.0v 30 15 36 18

CHASIS 12-Slot 21-Slot

5 volts 120a 120a
12 volts 8a 8a
minus 12 8a 8a
3.3 volts 120a 160a

Input voltage 90-264 volts
Input Current (max) 12a @ 120vac 14a @ 120vac
Frequency 47-63 Hz
Size (HxWxD) 14x19x20.5 17.5x21x19
Weight 55 lbs 80 lbs

Cooling/Air flow 3x100CFM fans 1x410 CFM fan
Temperature 0-40 deg C
Humidity 10-95%

14 (8u)

19
Rack-mountable

20.5

12 slot
17.5 (12u)

21

21 slot

19
Rack-

mountable

43

8.3 Linux Cluster

Figure 34 – Linux Cluster Nodes vs. Processing

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 3 4

Number of Nodes

T
im

e
in

 se
co

nd
s

FFT FFT inplace Corner Turn

44

Base System Requirements (2001 prices)
GigaNet Hub $2500
All Software Free
AMD 1.2 Ghz 512Mb RAM node $210
GigaNet Network Adapter $450
1U Rack Case w/150W PS $180

Figure 35 – Linux Cluster Nodes vs. Cost

$0
$1,000
$2,000
$3,000
$4,000
$5,000
$6,000
$7,000
$8,000

0 1 2 3 4 5 6
Number of Nodes

C
os

t i
n

D
ol

la
rs

GigaNet 8-port hub Nodes

45

Figure 36 – Linux Cluster Power and Air-Flow Requirements

0
5

10
15
20
25
30

1 2 3 4 5 6
Number of Nodes

A
m

ps
 a

t 1
20

va
c

0
50

100
150
200
250
300

1 2 3 4 5 6
Number of Nodes

A
ir

Fl
ow

 in
 C

FM

46

Figure 37 – Linux Cluster Weight and Space Requirements

0
20
40
60
80

100
120

0 1 2 3 4 5 6

Number of Nodes

W
ei

gh
t i

n
Po

un
ds

1.75

19

20

Rack-mountable

47

Figure 38 – Cost Comparison

1 2 3 4 5 6
7

8

$0

$50,000

$100,000

$150,000

Linux CSPI Mercury

48

9 Appendix B - Users Guide

Installation

The HPRTF software is written in C/C++ and compiles using RTExpress to build a parallel
version of the Force Aggregator component from NEAT. RTExpress must be installed and
configured on the target machine before compiling the HPRTF software. This installation
procedure assumes the target host runs Linux, however the code has been previously compiled
on Sun and Mercury platforms. C++ support is required, and GCC version 2.95.2 or higher is
suggested.

Contact Integrated Sensors Incorporated for questions and availability of RTExpress software.
 Integrated Sensors, Inc.
 502 Court St., Suite 210
 Utica, NY 13502
 (315) 798-1377

The HPRTF application, once built, can run standalone from data files or in concert with a
special modified version of NEAT in a demonstration mode. If the demo mode is desired, it is
strongly recommended that a “neat” home account be installed on the target HPC machine, and
the NEAT host (requires a Sun with Solaris 2.6 or higher) share the account via the “auto-home”
Unix mechanism. In this manor, data files can be easily shared across machines and no HPC
processing latency is introduced as the account physically exists on the HPC side. Consult the
system administrator of the machines if necessary.

Figure 39 – Physical Storage of NEAT Account and Sybase Database

NEAT
Sun SPARC

HPRTF
HPC

NEAT
Home

Account

Virtual
NEAT

Account

Sybase
Database

Auto-home

NFS

49

NEAT Host-Side Install

 This step is required if the HPRTF demonstration mode is desired, where the original NEAT
tool suite interacts in real-time with the HPRTF HPC process. NEAT requires installation onto a
Sun SPARC host, running Sybase 12+ and Solaris 2.6 or greater. If only stand-alone operation is
needed, this step can be skipped.

• Create a NEAT user account. If possible, create the account on the HPC side and share it
with the Sun host using the Unix “auto-home” feature. Make sure the account has the
path “/home/neat” to avoid unnecessary configuration steps.

• Install Sybase. Insert the Sybase CDROM and follow installation procedures as directed

by the Sybase install program. Follow operating-system specific procedures defined in
the Sybase install manual. When prompted to install a database, configure a server named
“SYBASE”. Entire the path of the database file as “/usr/sybase/databases/NEAT” and the
sys-proc file “/usr/Sybase/databases/SYSPROC”. Use default settings for all other fields.

• Insert the HPRTF Software CDROM into the target Sun machine. From the NEAT user

base directory (/home/neat), open the “NEAT Software” tar distribution.

cd /home/neat
tar xvf /cdrom/cdrom0/NEAT_host_software.tar

Installation of the source into the base directory of NEAT is necessary to avoid
configuration problems in NEAT. If it is not possible to maintain this directory path, the
“.neat” configuration script will need to be modified to the new path.

The NEAT host-side install will create a base directory “HPRTF” with the NEAT host-
side install contained within it.

• Test the NEAT file path configurations.

cd HPRTF/NEAT
source .neat

This will execute the NEAT setup script and initialize the Sun host-side tool suite. The script
defines easily readable directory paths at the start of the file, which are used through out the
rest of the setup. If any of these paths are invalid, the script returns errors stating the missing
components.

50

• Test the Sybase setup. First test whether the server is already active. This is accomplished by
executing the script (in ~/HPRTF/NEAT):

showserver

If no servers are listed, then attempt to start the server using the script:

startserver

Typical first-time errors sometimes involve user-permissions to Sybase database files. If
errors are encountered, change ownership of the database files to the NEAT user. At
anytime when NEAT is not being used, the server can be safely stopped using the
command:

stopserver.

If necessary, refer to the Sybase install manual to resolve any remaining errors.

• Install a NEAT database schema. Change directory to “~/HPRTF/NEAT/fd” and run the

“install” script. This will configure a schema to manage NEAT-specific data.

cd fd
install

Install a NEAT scenario. Change directory to “~/HPRTF/NEAT/scenario” and run the “load_neat_scenario”
script. This will load the “neat_scenario” scenario data file into the database. The installation procedure displays
the contents of the contact reports in ASCII form as they are read back from Sybase and validated.

cd ../scenario
load_neat_scenario

• Run NEAT. After sourcing the “.neat” configuration script, execute the Nodal Aggregation
Tool with the command:

run_nat

The following windows will appear:

51

Figure 40 - NAT Main Control Window

Figure 41 - NEAT Display GUI

52

 At this point the NEAT software is completely installed and has the ability to function either
standalone (sequential optimized on the Sun host) or in concert with the HPRTF component. If
NAT does not function, observe any error statements from the command line. Errors prohibiting
execution include Sybase configuration problems, display settings, and NEAT configurations.
All three usually state the problem clearly. All NEAT-related environmental configurations are
set from the .neat script and can be edited there if necessary. The map display works on both 8-
bit and 24-bit display modes on most all Sun frame buffers.

HPRTF Software Install

 Installation of the HPRTF software onto the HPC target host is considerably easier than the
NEAT software installation and validation in section B1.1. To guarantee a usable demonstration
system the NEAT account on the HPC should be shared with the Sun host containing the NEAT
install. If a file-based mode is to be used then this is not an issue. Additionally, an optional
connection mode between NEAT and HPRTF allows communication through TCP sockets. This
mode should be used when account sharing across machines is not an option.

• Insert the HPRTF Software CDROM into the target Sun machine. From the NEAT user
base directory (/home/neat), open the “HPRTF Software” tar distribution.

cd /home/neat
tar xvf /cdrom/cdrom0/HPRTF_host_software.tar

This will install the entire HPRTF software distribution. A directory is created for each Force
Aggregator C/C++ library needed for compilation, and a main “hprtf” directory organizes all
of the top-level Matlab wrappers, which define the HPRTF system.

This completes the installation process. Compilation directions follow in the next section.

53

HPRTF Software Compilation

Figure 42 - HPRTF Software Distribution

To compile the HPRTF system, first compile all of the support libraries, build the main source
under the “hprtf” subdirectory. All required support libraries can be compiled by using the
command “make_neat_libs” under the main “hpc_src” directory.

make_neat_libs

The second step consists of generating and compiling the program main for HPRTF. RTExpress
is required for this process.

hpc_src

db

evidence

fusion

stubs

misc

support

utils

NEAT Cache Database library

NEAT Evidence Network Algorithm

NEAT Fusion Algorithm Library

NEAT Sybase and Map-GUI stubs

HPRTF misc. support library – HPC-link

NEAT misc. support library

Separate utility programs – HPC-log

hprtf HPRTF Top-level build directory

C/C++ Libraries

HPRTF Main

54

The main Matlab file containing the top-level Force Aggregation function is the
“force_aggregator.m” file in the “hprtf” subdirectory. RTExpress uses this file, as well as
machine configurations and user options, to build the HPRTF main source. This is accomplished
by using the RTExpress “mapit” utility. As with any other RTExpress utilities, first run the
“rtsession” command to establish a license token.

rtsession
mapit force_aggregator

Figure 43 - RTExpress mapit utility

The left-side display shows processor configuration and assignments. The right-side half of the
display gives access to compilation options in the HPRTF application. See the RTExpress user
manual for more information and details on usage of this tool.

55

To generate the HPRTF main source, first build the “makefile” and launch-script using the
“mapit” utility. Select “Generate Make and Launch” under the “Group” main pull-down

Figure 44 - RTExpress mapit utility – Generate Make and Launch

This generates the “makefile” and a full build environment for compilation of the HPRTF system
using the configuration settings specified in the “mapit” GUI. A status window will display the
status of each step of this process.

56

Figure 45 - “Generate Make and Launch” status window

At this point a complete build environment exists. The application can now be compiled from the
command-line prompt. A “make” pre-process must be performed on the build environment to
allow compilation with the NEAT function libraries.

fixMake
make

This will generate the final executable. Running the “go” script (also generated by “mapit”) can
now launch the HPRTF application. This will run HPRTF as configured in the
“force_aggregator.m” application main.

go

57

NEAT/HPRTF Demonstration Sequence

This section details what steps are necessary to run NEAT on the Sun host with HPRTF on the
HPC host as the Force Aggregator.

• First, prepare to run NEAT on the Sun host.

cd /home/neat/HPRTF/NEAT
source .neat

• Make sure the Sybase server is active.

showserver

• If no servers are listed, start the NEAT Sybase server.

startserver

• Start the NAT application. There are multiple optional modes for this dual-machine
demo. If the NEAT home account has been setup to be shared between machines, the
NFS-file mode is preferable. In this case, the HPC hostname and cache filename are
necessary command-line arguments. The filename needs to contain the full pathname
to assure correct execution.

run_nat –file <filename> –sig <hpc_host>

If a shared account is not available, the socket mode can be used. This results in
slower execution times as an extra step is required on the HPC side to distribute the
data cache.

run_nat –socket <hpc_host>

Lastly, if instead it is desired to simply generate a cache file for offline testing of the
HPRTF system (later using the file as input on the HPC-side), the file-generation
option can be used. This will write the file without any processing.

run_nat –file <cache_output_filename>

58

The NAT application window and map GUI should now be open.

• First select the military template file to be used for processing. This is usually paired
with the input scenario and should have a similar filename as the truth scenario.
Select “open” under the “file” pull-down. Next select the file from the file-selection
pop-up window.

Figure 46 – Loading a Military Template File

59

• Activate the Force Aggregation function from the NAT window. Select “Military

Unit Track” under the “Actions” pull-down.

Figure 47 - “Military Unit Track” Action

At this point NEAT will build the contact-report data cache. If the HPRTF system is to be
used, and the Force Aggregator has not been started yet on the HPC host, start it now.

• Log onto the HPC and change directory to the main build area “hprtf”. Then run the
“go” script to launch the Force Aggregator. The application will then go into a sleep
state until the data cache is received from NEAT.

Once NEAT completes building the data cache, the Nodal Track window appears.
(Following page)

60

Figure 48 - Nodal Track Window

• Pressing the “track” button at this point sends the data cache to the HPC and starts the
Force Aggregation process. The login shell used to start the Force Aggregator should
come to life and immediately begin processing. When completed, the results (C2
Nodes) are transmitted back to the NEAT application via NFS file or socket,
depending on the mode used.

61

Figure 49 - Force Aggregation Results

62

This concludes the demonstration sequence. The Force Aggregator can be activated again
without restarting the NAT application by selecting the “Track” button again. At anytime after or
between processing C2 Nodes, the results from a previous run can be deleted from the screen and
Sybase database by selecting the “clear” button.

